fbpx
Insights 18 July 2024

ไม่ยากแต่ไม่ง่าย 5 ความท้าทาย เมื่อธุรกิจการผลิตนำ AI มาใช้

สำหรับธุรกิจการผลิตแล้ว ปัญญาประดิษฐ์ (AI) เริ่มได้รับความสนใจในการนำมาปรับใช้งานจริงมากยิ่งขึ้น เนื่องจากขีดความสามารถของ AI กำลังเพิ่มขึ้นอย่างรวดเร็ว โดยเฉพาะในแง่การเพิ่มประสิทธิภาพของกระบวนการดำเนินงานต่างๆ 

อย่างไรก็ตาม ภาคธุรกิจการผลิตถือว่ามีความเฉพาะตัว จึงทำให้การนำ AI มาใช้อาจมีความซับซ้อนมากกว่าและมีหลายประเด็นที่ต้องพิจารณาเป็นพิเศษ บลูบิคจึงอยากชวนมาดูความท้าทายในการนำ AI มาใช้สำหรับธุรกิจการผลิต พร้อมแนวทางในการสร้างผลลัพธ์จาก AI ให้เกิดขึ้นจริง   

5 ความท้าทายจาก AI ในธุรกิจการผลิต

  • การขาดความเชี่ยวชาญ

เนื่องจากธุรกิจการผลิตมีความเฉพาะตัวสูง ทำให้เมื่อต้องการนำ AI มาใช้ในกระบวนการต่างๆ ไม่เพียงบุคลากรต้องมีความเชี่ยวชาญในด้าน AI แล้ว ยังต้องมีประสบการณ์เฉพาะทางและมีทักษะในการบริหารจัดการ AI ให้เหมาะกับระบบและสภาพแวดล้อมของโรงงานและฐานการผลิตด้วยเช่นกัน ไม่ว่าจะเป็นในส่วนของการบริหารจัดการซัพพลายเชน งานประกันคุณภาพ (Quality Assurance) ที่ต้องดูแลให้กระบวนการผลิตสินค้าเป็นไปตามมาตรฐาน รวมไปถึงจัดการกระบวนการทำงานอื่นๆ ให้เป็นไปอย่างราบรื่น

  • การผสานและเชื่อมต่อเข้ากับระบบที่มีอยู่ 

ความท้าทายต่อมาคือการนำ AI ไปใช้เชื่อมต่อและผสานการทำงานกับระบบที่มีอยู่ของธุรกิจการผลิต ซึ่งอาจมีความซับซ้อนและมีต้นทุนค่าใช้จ่ายสูง เพราะไม่เพียงต้องทำให้ AI Solution สามารถใช้ได้จริงในกระบวนการทำงานเท่านั้น แต่ยังต้องสามารถเพิ่มความรวดเร็วและประสิทธิภาพในการทำงาน อีกทั้งด้วยความที่เทคโนโลยี AI มีการพัฒนาไปอย่างรวดเร็ว การเลือกโซลูชันที่เหมาะสมยิ่งต้องพิจารณาถึงความคุ้มค่าและขีดความสามารถในอนาคตด้วยเช่นกัน 

  • ปัญหาเรื่องคุณภาพข้อมูล 

ผลลัพธ์จาก AI จะมีประสิทธิภาพและความแม่นยำหรือไม่นั้น ขึ้นอยู่กับคุณภาพข้อมูลที่ใช้ในการเทรนโมเดลและวิธีการป้อนชุดคำสั่ง ซึ่งหากข้อมูลไม่มีคุณภาพ ไม่ครบถ้วนสมบูรณ์ หรือไม่มีการจัดเรียงจำแนกประเภทข้อมูลอย่างเหมาะสม ผลลัพธ์ที่ได้ย่อมมีความไม่แม่นยำหรือเสี่ยงบิดเบือนสูง สำหรับในธุรกิจการผลิตเองก็เช่นกัน ดังนั้น นอกเหนือจากมีระบบฐานข้อมูลที่สามารถเก็บและประมวลผลข้อมูลได้อย่างรวดเร็วแล้ว ธุรกิจการผลิตควรพิจารณาใช้ระบบ MES หรือ Manufacturing Execution System เพื่อช่วยในการบริหารจัดการและเก็บข้อมูลการทำงานของเครื่องจักรได้อย่างละเอียด ไม่ว่าจะเป็นการวางแผนการผลิต ใบสั่งผลิต ประสิทธิผลโดยรวมของเครื่องจักร (OEE) และการติดตามการหยุดทำงานของเครื่องจักร (Down Time Tracking)

  • การหยุดทำงานอย่างกะทันหัน

ธุรกิจการผลิตมีความท้าทายด้านกระบวนการดำเนินงานหลายส่วน เช่น เครื่องจักรหยุดทำงานกะทันหัน การขาดแคลนพลังงาน และการขาดแคลนวัสดุ แม้ว่าธุรกิจการผลิตที่วางแผนล่วงหน้าจะมีการวางมาตรการเพื่อเตรียมพร้อมรับมือกับเหตุการณ์ไม่คาดคิด แต่ก็ไม่สามารถหลีกเลี่ยงได้ทั้งหมด ดังนั้นเหตุการณ์หยุดทำงานที่ไม่ได้วางแผนไว้ในการผลิตจึงอาจเกิดขึ้นได้ และในบางกรณีอาจอยู่นอกเหนือขอบเขตการทำงานของ AI อย่างไรก็ตาม ในแง่ของการดูแลซ่อมบำรุงเครื่องจักรนั้น AI สามารถนำมาช่วยประเมินและคาดการณ์ความเสี่ยงที่เครื่องจักรเสียได้ โดยระบบอัตโนมัติจะติดตามสภาพและอายุการใช้งานของอุปกรณ์ และแจ้งเตือนพนักงานให้ทำการซ่อมแซมตามเวลาที่กำหนด เมื่อคาดว่าชิ้นส่วนจะสึกหรอและจำเป็นต้องเปลี่ยนใหม่ 

  • การประกันคุณภาพและการปฏิบัติตามระเบียบข้อกำหนด

ความท้าทายสำคัญอีกอย่างคือการสร้างความมั่นใจว่าเทคโนโลยียังคงสามารถรักษาคุณภาพของกระบวนการและผลลัพธ์จากการดำเนินงานต่างๆ รวมถึงสอดคล้องและเป็นไปตามระเบียบข้อกำหนดของภาคอุตสาหกรรม โดยเฉพาะในภาคอุตสาหกรรมที่มีมาตรฐานการปฏิบัติตามกฎระเบียบและคุณภาพที่เข้มงวด เช่น ยา อาหาร และเครื่องดื่ม ดังนั้นนำ AI มาใช้งาน ธุรกิจอาจเพิ่มกระบวนการตรวจสอบผลลัพธ์อีกขั้น รวมถึงวางมาตรการและแนวทางปฏิบัติเพื่อสร้างคุณภาพตั้งแต่แรกๆ และกำหนดให้บุคลากรปฏิบัติตามแนวทางอย่างครบถ้วน 

ทำอย่างไรให้ AI สร้างผลลัพธ์ได้จริงในธุรกิจการผลิต

แม้ปัจจุบันเราเริ่มเห็นการนำ AI มาใช้งานในบางกระบวนการของธุรกิจการผลิต เช่น การระบุข้อบกพร่องและปัญหาของผลิตภัณฑ์ คาดการณ์ระยะเวลาการบำรุงรักษาอุปกรณ์ และเพิ่มความสะดวกในการจัดส่งและการติดตามสินค้า เป็นต้น อย่างไรก็ตาม การนำ AI ไปผนวกรวมเข้ากับการดำเนินงานที่มีอยู่ไม่ใช่เรื่องง่าย 

เพื่อให้ AI สามารถสร้างผลลัพธ์ได้อย่างมีประสิทธิภาพ ธุรกิจการผลิตจึงควรวางกลยุทธ์และแนวทางนำไป AI ไปปรับใช้อย่างเหมาะสม โดยสามารถเริ่มต้นจาก 

  • ระบุความท้าทายสำคัญที่ธุรกิจเผชิญอยู่

การกำหนดขอบเขตของโครงการ AI อย่างรอบคอบเป็นสิ่งสำคัญ โดยธุรกิจการผลิตควรเริ่มจากการสร้าง รายการความท้าทายที่ต้องการแก้ไข ซึ่งสามารถเริ่มจากการระบุข้อมูลที่ต้องเก็บรวบรวม ซอฟต์แวร์และอัลกอริทึมที่เกี่ยวข้อง และตัวชี้วัดสำหรับติดตามความสำเร็จของโครงการ โดยการกำหนดขอบเขตอย่างชัดเจน ทำให้ธุรกิจสามารถวางแนวทางการทำงานร่วมกับทุกฝ่ายที่เกี่ยวข้องให้เป็นไปในทิศทางเดียวกัน และกำหนดตัวชี้วัดเพื่อประเมินระบบ AI ที่นำไปใช้ เป้าหมายของการใช้งาน AI ควรมีความเฉพาะเจาะจง สามารถวัดผลได้ และสอดคล้องกับความต้องการขององค์กร 

  • ประเมินความพร้อมด้านข้อมูลขององค์กรอย่างละเอียด 

ก่อนการเริ่มนำ AI มาใช้จริง สิ่งสำคัญที่ควรดำเนินการคือการประเมินว่าองค์กรมีความพร้อมด้านข้อมูลมากน้อยแค่ไหน เช่น ข้อมูลมีคุณภาพสอดคล้องกับสถานการณ์จริง หรือข้อมูลมีความบิดเบือน ไม่ครบถ้วน หรือไม่เป็นระเบียบยากต่อการนำไปใช้วิเคราะห์ต่อ โดยเมื่อประเมินและทำความเข้าใจเกี่ยวกับคุณภาพข้อมูลภายในองค์กรแล้ว ธุรกิจจะทราบจุดที่ควรปรับปรุงแก้ไขและตัดสินใจได้ว่าควรพัฒนา AI เพื่อนำมาไปใช้งานอย่างไรได้บ้าง   

  • วางแนวทางการใช้งาน AI 

เมื่อพิจารณาโครงสร้างพื้นฐานขององค์กรและเป้าหมายทางธุรกิจแล้ว ขั้นตอนสำคัญคือการวางแนวทางการนำ AI ไปปรับใช้งานจริง เช่น การใช้งาน AI บนระบบคลาวด์ การใช้ในสภาพแวดล้อมที่แยกจากเครือข่าย หรือการนำไปใช้งานเฉพาะสำหรับบางส่วนงานอย่างงานทำเอกสาร งานที่เกี่ยวข้องกับกระบวนการหลังบ้าน เป็นต้น รวมถึงกำหนดวิธีการตรวจสอบและติดตามความสำเร็จของโมเดล AI หลังจากการปรับใช้แล้ว เพื่อปรับปรุงให้โมเดลมีประสิทธิภาพและตอบสนองความต้องการใช้งานได้ดียิ่งขึ้น 

  • เลือกแพลตฟอร์มและซอฟต์แวร์ที่เหมาะสม 

อีกปัจจัยสำคัญที่มีผลต่อการสร้างผลลัพธ์จาก AI คือแพลตฟอร์ม เครื่องมือและซอฟต์แวร์ต่างๆ ที่สามารถจัดการกับการประมวลผลข้อมูลแบบเรียลไทม์ในปริมาณมาก ธุรกิจจึงควรพิจารณาเลือก AI แพลตฟอร์มที่สามารถรองรับการเชื่อมต่อกับระบบต่างๆ ได้หลากหลาย เช่น ระบบ ERP หรือระบบ HRM เพื่อให้สามารถทำงานร่วมกับหลายฝ่ายได้อย่างราบรื่น 

  • วางแนวทางด้านการกำกับดูแลและความปลอดภัย

ประเด็นเรื่องการกำกับดูแลและความปลอดภัยคือเรื่องสำคัญ ดังนั้นธุรกิจการผลิตจึงควรเลือกแพลตฟอร์ม AI ที่ไม่สร้างความเสี่ยงหรือช่องโหว่ความปลอดภัยต่างๆ โดยอาจพิจารณาแพลตฟอร์มที่มีการควบคุมการเข้าถึงผู้ใช้และการรายงานช่องโหว่ทั่วไป (CVEs) รวมถึงแพลตฟอร์มที่เชื่อมโยงระหว่าง CVEs กับแพ็คเกจซอฟต์แวร์ที่องคกรกำลังใช้งานอยู่

  • ใช้โมเดลแบบที่ปรับแต่งสำหรับแต่ละธุรกิจโดยเฉพาะ (Tailor-made) 

อุตสาหกรรมการผลิตครอบคลุมธุรกิจหลากหลายรูปแบบ ตั้งแต่การผลิตแบบปรับแต่งตามสั่งด้วยเครื่องจักรที่ควบคุมด้วยคอมพิวเตอร์ งานผลิตแบบปรับแต่งเต็มรูปแบบ การผลิตจำนวนมากที่มีข้อจำกัดด้านต้นทุน การผลิตที่มีความแม่นยำสูงและปริมาณน้อยสำหรับงานเฉพาะทาง ดังนั้นแนวทางพัฒนาโมเดลแบบ one-size-fits-all จึงอาจไม่ครอบคลุมความต้องการของธุรกิจ จึงควรพิจารณาการใช้โมเดล AI แบบที่ปรับแต่งสำหรับแต่ละธุรกิจโดยเฉพาะ (Tailor-made) เพื่อให้สามารถตอบสนองความต้องการการผลิตหลากหลายรูปแบบได้ และสามารถควบคุมการใช้ต้นทุนอย่างคุ้มค่าและมีประสิทธิภาพมากที่สุด  

สำหรับธุรกิจการผลิตแล้ว AI สามารถช่วยเพิ่มประสิทธิภาพและลดต้นทุนในกระบวนการต่างๆ ได้ อีกทั้งยังนำไปสู่การสร้างโอกาสใหม่ๆ ทางธุรกิจ อย่างไรก็ตามความท้าทายที่เกิดขึ้นจากการนำ AI มาใช้ย่อมเกิดขึ้นตามมาเช่นกัน ดังนั้นในการสร้างผลลัพธ์จาก AI จึงต้องมีทีมงานผู้เชี่ยวชาญเฉพาะด้าน เพื่อพัฒนาโมเดล AI ที่สามารถทำงานร่วมกับระบบและกระบวนการทำงานขององค์กรได้อย่างราบรื่นและปลอดภัย ขณะที่สามารถสร้างคุณค่าเพิ่มให้ธุรกิจทั้งในแง่การดำเนินงานที่มีประสิทธิภาพมากขึ้น และการสร้างประสบการณ์ลูกค้าที่ดียิ่งขึ้น

บลูบิค ในฐานะที่ปรึกษาด้านเทคโนโลยีชั้นนำและผู้เชี่ยวชาญด้าน AI สามารถช่วยคุณจัดการกับความท้าทายและปัญหาต่าง ๆ ด้วยการวางกลยุทธ์ การพัฒนาโมเดล AI ขั้นสูง จนถึงการเชื่อมโยงกับบริการและแอปพลิเคชันต่างๆ บน Digital Landscape ทำให้องค์กรสามารถใช้ประโยชน์จาก AI ขั้นสูงได้อย่างเต็มประสิทธิภาพ พร้อมยกระดับผลลัพธ์ของกระบวนการทำงานด้วยระบบอัตโนมัติที่ปลอดภัยและเชื่อถือได้

สำหรับผู้ที่สนใจสามารถติดต่อเข้ามาได้ที่

[email protected] 

☎ 02-636-7011

ขอบคุณข้อมูลอ้างอิงจาก vksapp, techtarget, foundrymag, linkedin, supplychainbrain